BFAS school Practical session 1

Thierry Denœux

29 September 2015

1 Exercises

- 1. Represent the uncertainty about the outcome of the Ellsberg's experiment, using a mass function on a suitable frame. Compute the corresponding belief, plausibility and commonality functions.
- 2. Let $\Omega = \{a, b\}$, and let m and m' be the following mass functions on Ω ,

$$m = \{a\}^{lpha} \oplus \{b\}^{eta}; \quad m' = \{a\}^{lpha'} \oplus \{b\}^{eta'};$$

- (a) Compute m and m'.
- (b) Compute $m \oplus m'$.
- (c) Compute $m \otimes m'$.
- 3. Let [U; V] be a random interval. Compute $Bel^{\Theta}((-\infty; u])$ and $Pl^{\Theta}((-\infty; u])$ for any $u \in \mathbb{R}$, using the cdfs of U and V.
- 4. Let Y_1 ; ...; Y_n ; Z be an iid sample from a uniform distribution in [0;]. Assume that $\mathbf{Y} = (Y_1; \ldots; Y_n)$ is observed and Z is not yet observed.
 - (a) Describe the likelihood-based belief function on .
 - (b) Describe the predictive belief function on Z.

2 Solutions

1. A suitable frame is $\Omega = \{R, B, Y\}$.

A	Ø	$\{R\}$	<i>{B}</i>	$\{Y\}$	$\{R;B\}$	$\{R;Y\}$	$\{B;Y\}$	$\{R;B;Y\}$
m(A)	0	1/3	0	0	0	0	2/3	0
Bel(A)	0	1/3	0	0	1/3	1/3	2/3	1
PI(A)	0	1/3	2/3	2/3	1	1	2/3	1
Q(A)	1	1/3	2/3	2/3	0	0	2/3	0

2. (a) We have

$$m(\{a\}) = \frac{(1-)}{+-}; \quad m(\{b\}) = \frac{(1-)}{+-};$$
$$m(\{a;b\}) = \frac{(1-)}{+-};$$

A similar expression is obtained for m' by replacing and by ' and '.

(b) $m \oplus m' = \{a\}^{\alpha \alpha'} \{b\}^{\beta \beta'}$. Consequently,

$$m(\{a\}) = \frac{\prime (1 - \prime)}{\prime + \prime - \prime}; \quad m(\{b\}) = \frac{\prime (1 - \prime)}{\prime + \prime - \prime};$$
$$m(\{a; b\}) = \frac{\prime \prime}{\prime + \prime - \prime};$$

- (c) $m \otimes m' = \{a\}^{\min(\alpha, \alpha')} \{b\}^{\min(\beta, \beta')}$. The masses can easily be computed as above.
- 3. For all $u \in \mathbb{R}$, we have:

$$Bel((-\infty; u]) = ([U; V] \subseteq (-\infty; u]) = (V \le u) = F_V(u);$$

where F_V is the cumulative distribution function (cdf) of V, and

$$PI((-\infty; u]) = ([U; V] \cap (-\infty; u] \neq \emptyset) = (U \le u) = F_U(u):$$

4. (a) The likelihood function is

$$L_{\mathbf{y}}() = {}^{-n} \mathbb{1}_{[y_{(n)}, +\infty)}();$$

where $y_{(n)} = \max_{1 \le i \le n} y_i$, and the contour function is

$$\rho l_{\mathbf{y}}(\) = \left(\frac{y_{(n)}}{2}\right)^n \mathbb{1}_{[y_{(n)},+\infty)}(\)$$

We note that, the contour function being unimodal and uppersemicontinous, the focal sets $\Gamma_{\mathbf{y}}(s)$ are close intervals $[\hat{y}_{*}(s); \hat{y}_{*}(s)]$, with $\hat{y}_{*}(s) = y_{(n)}$ and $\hat{y}_{*}(s) = y_{(n)}s^{-1/n}$ for all $s \in [0, 1]$. Consequently, the belief function $Bel_{\mathbf{y}}^{\Theta}$ is induced by the random closed interval $[y_{(n)}; y_{(n)}S^{-1/n}]$, with $S \sim \mathcal{U}([0, 1])$.

(b) As $F_{\theta}(z) = z$ for all $0 \le z \le .$, we can write Z = ...W with $W \sim \mathcal{U}([0,1])$. As function '(; W) = ...W is continuous in , each focal set of $Bel_{\mathbf{y}}^{\mathbb{Z}}$ is an interval

$$(\Gamma_{\mathbf{y}}(S); W) = [Y_{(n)}W; Y_{(n)}S^{-1/n}W];$$

so that $Bel_{\mathbf{y}}^{\mathbb{Z}}$ is induced by the random interval

$$[\widehat{Z}_{\mathbf{y}*},\widehat{Z}_{\mathbf{y}}^*] = [y_{(n)} \mathcal{W}, y_{(n)} \mathcal{S}^{-1/n} \mathcal{W}]:$$